Prediction of 1H NMR chemical shifts using neural networks.

نویسندگان

  • João Aires-de-Sousa
  • Markus C Hemmer
  • Johann Gasteiger
چکیده

Counterpropagation neural networks were applied to the fast prediction of 1H NMR chemical shifts of CHn groups in organic compounds. The training set consisted of 744 examples of protons that were represented by physicochemical, topological, and geometric descriptors. The selection of descriptors was performed by genetic algorithms, and the models obtained were compared to those containing all the descriptors. The best models yielded very good predictions for an independent prediction set of 259 cases (mean absolute error for whole set, 0.25 ppm; mean absolute error for 90% of cases, 0.19 ppm) and for application cases consisting of four natural products recently described. Some stereochemical effects could be correctly predicted. A useful feature of the system resides in its ability to be retrained with a specific data set of compounds if improved predictions for related structures are required.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Prediction of Carbon-13 NMR Chemical Shifts Using Ensembles of Networks

| Ensembles of multi-layer network is set up to predict the carbon-13 nuclear magnetic resonance (C13 NMR) chemical shifts of a series of mono-substituted benzenes. The descriptors (inputs) used are twelve structural-based vectors that correspond to the calculated H uckel and Gasteiger electron densities of the mono-substituted aromatic systems and four graphical descriptors that correspond to ...

متن کامل

TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.

NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between 13C, 15N and 1H chemical shifts and backbone torsion angles phi and psi (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from...

متن کامل

Using neural networks for (13)c NMR chemical shift prediction-comparison with traditional methods.

Interpretation of (13)C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network (J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical desc...

متن کامل

SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network.

NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structure...

متن کامل

Fast Determination of 13C NMR Chemical Shifts Using Artificial Neural Networks

Nine different artificial neural networks were trained with the spherically encoded chemical environments of more than 500000 carbon atoms to predict their 13C NMR chemical shifts. Based on these results the PC-program "C_shift" was developed which allows the calculation of the 13C NMR spectra of any proposed molecular structure consisting of the covalently bonded elements C, H, N, O, P, S and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 74 1  شماره 

صفحات  -

تاریخ انتشار 2002